Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

نویسندگان

  • Li Chen
  • Hirokazu Ueta
  • Régis Bisson
  • Rainer D Beck
چکیده

We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum-state-resolved CO2 scattering dynamics at the gas-liquid interface: incident collision energy and liquid dependence.

Quantum-state-resolved dynamics at the gas-liquid interface are probed by colliding supersonically cooled molecular beams of CO(2) with freshly formed liquid surfaces in a vacuum. Translational, rotational, and vibrational state distributions of both incident and scattered fluxes are measured by high-resolution direct infrared absorption spectroscopy and laser dopplerimetry in the 00(0)0 and 01...

متن کامل

Quantum state resolved gas-surface reaction dynamics experiments: a tutorial review.

We present a tutorial review of our quantum state resolved experiments designed to study gas-surface reaction dynamics. The combination of a molecular beam, state specific reactant preparation by infrared laser pumping, and ultrahigh vacuum surface analysis techniques make it possible to study chemical reactivity at the gas-surface interface in unprecedented detail. We describe the experimental...

متن کامل

Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy.

Time-resolved surface enhanced infrared absorption (SEIRA) spectroscopy is employed to analyse the dynamics of the protein structural changes coupled to the electron transfer process of immobilised cytochrome c (Cyt-c). Upon electrostatic binding of Cyt-c to Au electrodes coated with self-assembled monolayers (SAMs) of carboxyl-terminated thiols, cyclic voltammetric measurements demonstrate a r...

متن کامل

Design and application of a new cell for in situ infrared reflection-absorption spectroscopy investigations of metal-atmosphere interfaces.

A new experimental setup for studying reactions occurring in the metal-atmosphere interface by applying in situ infrared reflection-absorption spectroscopy (IRRAS) is presented. It consists of a gas-mixing unit, where the moist air is generated with or without corrosive gases, the reaction cell for the in situ investigations, and an optical system coupled with a Fourier transform infrared (FT-I...

متن کامل

Stereodynamics in state-resolved scattering at the gas-liquid interface.

Stereodynamics at the gas-liquid interface provides insight into the important physical interactions that directly influence heterogeneous chemistry at the surface and within the bulk liquid. We investigate molecular beam scattering of CO(2) from a liquid perfluoropolyether (PFPE) surface in vacuum [incident energy E(inc) = 10.6(8) kcal/mol, incident angle theta(inc) = 60 degrees] to specifical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2013